Title Variations of microbial community in Aconitum carmichaeli Debx. rhizosphere soilin a short-term continuous cropping system
Author Xia Fei1,2, Wang Lina1, Chen Jiayang1, Fu Meng1, Wang Guodong1, Yan Yaping1, and Cui Langjun1
Address 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi 710119, P. R. China, 2School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’An 710021, P. R. China
Bibliography Journal of Microbiology, 59(5),481–490, 2021,
DOI 10.1007/s12275-021-0515-z
Key Words Aconitum carmichaeli Debx., continuous cropping, microbial communities, plant diseases, soil properties
Abstract Aconitum carmichaeli Debx. (Ranunculaceae) is a potential source of an important herbal drug named “Fuzi”, which is derived from the lateral root of the plant. Increased therapeutic usage resulted in the great demand for artificial cultivation of A. carmichaeli, however, the obstacles caused by continuous cropping is a serious problem. Continuous cropping has shown to affect the soil biological and non-biological factors. The current study attempted to discover the variations of microbial communities and soil properties in shortterm continuous cropping of A. carmichaeli. An experimental procedure with A. carmichaeli planted two years continuously was established. The variation of the soil microbial community, disease incidence, soil properties, and the correlation between soil microbe and disease incidence were investigated. The disease incidence increased during the continuous cropping of A. carmichaeli. The PCoA and LefSe results indicated that fungal communities in rhizosphere soil were altered during the short-term continuous croppingand the bacterial community was disturbed by the cultivation of A. carmichaeli, however, in the following two years of continuous cropping period, the soil bacterial community has not changed obviously. Proportions of some fungal and bacterial genera were varied significantly (p < 0.05), and some genera of microflora showed a significant correlation with adisease incidence of A. carmichaeli. Microorganisms contributing to community composition discrepancy were also elucidated. Continuous cropping of A. carmichaeli disturbed the rhizosphere soil microbial community and altered the soil chemical parameters and soil pH. These variations in soil may be related to the occurrence of plant diseases. The current study will not only provide theoretical and experimental evidence for the A. carmichaeli continuous cropping obstacles but will also contribute to A. carmichaeli agricultural production and soil improvement.