Title A mucin-responsive hybrid two-component system controls Bacteroides thetaiotaomicron colonization and gut homeostasis
Author Ju-Hyung Lee, Soo-Jeong Kwon, Ji-Yoon Han, Sang-Hyun Cho, Yong-Joon Cho, and Joo-Hong Park*
Address School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
Bibliography Journal of Microbiology, 60(2),215-223, 2022,
DOI 10.1007/s12275-022-1649-3
Key Words Bacteroides thetaiotaomicron, hybrid two-component system, mucin, colonization, colitis
Abstract The mammalian intestinal tract contains trillions of bacteria. However, the genetic factors that allow gut symbiotic bacteria to occupy intestinal niches remain poorly understood. Here, we identified genetic determinants required for Bacteroides thetaiotaomicron colonization in the gut using transposon sequencing analysis. Transposon insertion in BT2391, which encodes a hybrid two-component system, increased the competitive fitness of B. thetaiotaomicron. The BT2391 mutant showed a growth advantage in a mucin-dependent manner and had an increased ability to adhere to mucus-producing cell lines. The increased competitive advantage of the BT2391 mutant was dependent on the BT2392–2395 locus containing susCD homologs. Deletion of BT2391 led to changes in the expression levels of B. thetaiotaomicron genes during gut colonization. However, colonization of the BT2391 mutant promoted DSS colitis in low-fiber diet-fed mice. These results indicate that BT2391 contributes to a sustainable symbiotic relationship by maintaining a balance between mucosal colonization and gut homeostasis.