Title |
Those Nematode‑Trapping Fungi That are not Everywhere: Hints Towards Soil Microbial Biogeography |
Author |
Wei Deng1,2,3, Fa Zhang1,2,3, Davide Fornacca1,2,3*, Xiao‑Yan Yang1,2,3*, and Wen Xiao1,2,3 |
Address |
1Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, Yunnan, People’s Republic of China, 2Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, Yunnan, People’s Republic of China, 3The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, Yunnan, People’s Republic of China |
Bibliography |
Journal of Microbiology, 61(5),511-523, 2023,
|
DOI |
10.1007/s12275-023-00043-7
|
Key Words |
Microorganisms · Yunnan · Fungi · Pure culture · Geographical distribution |
Abstract |
The existence of biogeography for microorganisms is a raising topic in ecology and researchers are employing better distinctions
between single species, including the most rare ones, to reveal potential hidden patterns. An important volume
of evidence supporting heterogeneous distributions for bacteria, archaea and protists is accumulating, and more recently
a few efforts have targeted microscopic fungi. We propose an insight into this latter kingdom by looking at a group of soil
nematode-trapping fungi whose species are well-known and easily recognizable. We chose a pure culture approach because
of its reliable isolation procedures for this specific group. After morphologically and molecularly identifying all species
collected from 2250 samples distributed in 228 locations across Yunnan province of China, we analyzed occurrence frequencies
and mapped species, genera, and richness. Results showed an apparent cosmopolitan tendency for this group of
fungi, including species richness among sites. However, only four species were widespread across the region, while nonrandom
heterogeneous distributions were observed for the remaining 40 species, both in terms of statistical distribution of
species richness reflected by a significant variance-to-mean ratio, as well as in terms of visually discernible spatial clusters
of rare species and genera on the map. Moreover, several species were restricted to only one location, raising the question
of whether endemicity exists for this microbial group. Finally, environmental heterogeneity showed a marginal contribution
in explaining restricted distributions, suggesting that other factors such as geographical isolation and dispersal capabilities
should be explored. These findings contribute to our understanding of the cryptic geographic distribution of microorganisms
and encourage further research in this direction. |