Title REVIEW] Hgc1-Cdc28–how much does a single protein kinase do in the regulation of hyphal development in Candida albicans?
Author Yue Wang
Address Candida albicans Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
Bibliography Journal of Microbiology, 54(3),170-177, 2016,
DOI 10.1007/s12275-016-5550-9
Key Words Candida albicans, yeast-to-hyphae growth transition, cyclin-dependent kinase, polarized growth, protein phosphorylation
Abstract The fungal human pathogen Candida albicans can cause invasive infection with high mortality rates. A key virulence factor is its ability to switch between three morphologies: yeast, pseudohyphae and hyphae. In contrast to the ovalshaped unicellular yeast cells, hyphae are highly elongated, tube-like, and multicellular. A long-standing question is what coordinates all the cellular machines to construct cells with distinct shapes. Hyphal-specific genes (HSGs) are thought to hold the answer. Among the numerous HSGs found, only UME6 and HGC1 are required for hyphal development. UME6 encodes a transcription factor that regulates many HSGs including HGC1. HGC1 encodes a G1 cyclin which partners with the Cdc28 cyclin-dependent kinase. Hgc1- Cdc28 simultaneously phosphorylates and regulates multiple substrates, thus controlling multiple cellular apparatuses for morphogenesis. This review is focused on major progresses made in the past decade on Hgc1’s roles and regulation in C. albicans hyphal development and other traits important for infection.